3.3.77 \(\int \frac {\sqrt {a+a \sin (c+d x)}}{(e \cos (c+d x))^{5/2}} \, dx\) [277]

Optimal. Leaf size=74 \[ -\frac {2 \sqrt {a+a \sin (c+d x)}}{d e (e \cos (c+d x))^{3/2}}+\frac {4 (a+a \sin (c+d x))^{3/2}}{3 a d e (e \cos (c+d x))^{3/2}} \]

[Out]

4/3*(a+a*sin(d*x+c))^(3/2)/a/d/e/(e*cos(d*x+c))^(3/2)-2*(a+a*sin(d*x+c))^(1/2)/d/e/(e*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2751, 2750} \begin {gather*} \frac {4 (a \sin (c+d x)+a)^{3/2}}{3 a d e (e \cos (c+d x))^{3/2}}-\frac {2 \sqrt {a \sin (c+d x)+a}}{d e (e \cos (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sin[c + d*x]]/(e*Cos[c + d*x])^(5/2),x]

[Out]

(-2*Sqrt[a + a*Sin[c + d*x]])/(d*e*(e*Cos[c + d*x])^(3/2)) + (4*(a + a*Sin[c + d*x])^(3/2))/(3*a*d*e*(e*Cos[c
+ d*x])^(3/2))

Rule 2750

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*m)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] &&  !ILtQ[p, 0]

Rule 2751

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sin (c+d x)}}{(e \cos (c+d x))^{5/2}} \, dx &=-\frac {2 \sqrt {a+a \sin (c+d x)}}{d e (e \cos (c+d x))^{3/2}}+\frac {2 \int \frac {(a+a \sin (c+d x))^{3/2}}{(e \cos (c+d x))^{5/2}} \, dx}{a}\\ &=-\frac {2 \sqrt {a+a \sin (c+d x)}}{d e (e \cos (c+d x))^{3/2}}+\frac {4 (a+a \sin (c+d x))^{3/2}}{3 a d e (e \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 46, normalized size = 0.62 \begin {gather*} \frac {2 \sqrt {a (1+\sin (c+d x))} (-1+2 \sin (c+d x))}{3 d e (e \cos (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sin[c + d*x]]/(e*Cos[c + d*x])^(5/2),x]

[Out]

(2*Sqrt[a*(1 + Sin[c + d*x])]*(-1 + 2*Sin[c + d*x]))/(3*d*e*(e*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.18, size = 44, normalized size = 0.59

method result size
default \(\frac {2 \left (2 \sin \left (d x +c \right )-1\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\sin \left (d x +c \right )\right )}}{3 d \left (e \cos \left (d x +c \right )\right )^{\frac {5}{2}}}\) \(44\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(2*sin(d*x+c)-1)*cos(d*x+c)*(a*(1+sin(d*x+c)))^(1/2)/(e*cos(d*x+c))^(5/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 187 vs. \(2 (58) = 116\).
time = 0.56, size = 187, normalized size = 2.53 \begin {gather*} -\frac {2 \, {\left (\sqrt {a} - \frac {4 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {4 \, \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {\sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2} e^{\left (-\frac {5}{2}\right )}}{3 \, d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {3}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-2/3*(sqrt(a) - 4*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) + 4*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - sq
rt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2*e^(-5/2)/(d*(sin(d*x +
c)/(cos(d*x + c) + 1) + 1)^(3/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(2*sin(d*x + c)^2/(cos(d*x + c)
+ 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1))

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 37, normalized size = 0.50 \begin {gather*} \frac {2 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (2 \, \sin \left (d x + c\right ) - 1\right )} e^{\left (-\frac {5}{2}\right )}}{3 \, d \cos \left (d x + c\right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

2/3*sqrt(a*sin(d*x + c) + a)*(2*sin(d*x + c) - 1)*e^(-5/2)/(d*cos(d*x + c)^(3/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}{\left (e \cos {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**(1/2)/(e*cos(d*x+c))**(5/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))/(e*cos(c + d*x))**(5/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 5.67, size = 61, normalized size = 0.82 \begin {gather*} -\frac {4\,\sqrt {a\,\left (\sin \left (c+d\,x\right )+1\right )}\,\left (\cos \left (c+d\,x\right )-\sin \left (2\,c+2\,d\,x\right )\right )}{3\,d\,e^2\,\left (\cos \left (2\,c+2\,d\,x\right )+1\right )\,\sqrt {e\,\cos \left (c+d\,x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(1/2)/(e*cos(c + d*x))^(5/2),x)

[Out]

-(4*(a*(sin(c + d*x) + 1))^(1/2)*(cos(c + d*x) - sin(2*c + 2*d*x)))/(3*d*e^2*(cos(2*c + 2*d*x) + 1)*(e*cos(c +
 d*x))^(1/2))

________________________________________________________________________________________